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Phase Change Materials: PCMs

o Phase Change Materials exploit the Latent Heat of the solid/liquid phase
transition to store or release a large amount of heat barely changing the

temperature
o Example: melting 1kg ice at 0° : AH =333k J.

Same energy to heat 1kg water from 0° to 80°
o Hundredths known: organic (paraffins, non-paraffins), inorganic (salt

hydrates, metallics), eutectics

o Paraffin waxes: stable with melting points within room temperatures
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PCMs: applications
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o Textiles: keeping body
temperature

o Solar plants: buffering of energy

Space applications
Space suites
Electronic thermal control

Refrigeration of food
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Conservation of biological samples
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limitations
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o Selection of a PCM for a given
application

o Paraffins (and most of PCM)
exhibit low conductivity: slow heat
transfer
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Goal: enhance heat transfer rate with minimum complexity

o Marangoni driving (microgravity)

o Dispersion of nanoparticles (high potential but no good modeling)
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1. Nano-enhanced PCMs (NePCMs)
e Metallic nanoparticles increase conductivity and viscosity
e Modeled as an effective transport coefficients in NePCMs

e Ample experimental and theoretical work

Conductivity models Viscosity model ;. —

O Maxwell (spherical particles) © Brinkman

© Hamilton-Crosser O Einstein

O Jeffrey O Batchelor

o Davis 3
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Strong overestimation of heat transfer Agreement with experiments
Used in most of the studies No used to study NePCM
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1. NePCM: n-octadecane with dispersed alumina nanoparticles
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o Liquid phase of PCM
o Maxwell&Brinkman: continued
decrease of Pr.sy with nanoparticle
y concentration
/| o Empirical model: only some ranges
s of parameters decrease Prcyy

o Solid phase of PCM

o Maxwell's model for conductivity
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1. NePCM: Enthalpy-porosity model with modified transport coefficients

Momentum equation with porous media term

8—u-i-(u~V)u— —Vp+v, Au—l—Ciu—i- B(T —Tp)
at - p eff €+f5 gp 0
o Solid/liquid interface (Mushy region) behaves like a porous media

o Term Oi;ﬁ u allows a common domain for NS and energy equations for

liquid and solid phases

Energy equation with source term

J
[& +u- v:| [P ((1 - fl - ¢)Cpcm,5 +.fl Cpcm,l) +Pnp¢cnp] T
0
= V(”pcm@ffvT) —(1—=¢)pL aiJ;l
o Liquid phase of PCM: Maxwell&Brinkman and empirical fit for v ¢ and

Keff
o Solid phase of PCM: Maxwell model for conductivity
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Physical system: melting of n-octadecane with a free surface

N-octadecane

p (Kgm™3) 776
™, pds = _ydr csleg (JKgPK™Y) | 1934]2196
rslkg (Wm™ LK) 0.358/0.13
Ts| T (K) 298.65(299.65
L(JKg™) 243.5-10%
a (K™Y 9.1-107%

Adimensional numbers

Pr = 60.8
Ste = 0.45(T), = 50°),0.9(T}, = 100°)

Numerics
o OpenSource FVs: OpenFoam 2.31

o Time integration: Cranck-Nicholson

1—"1

O Curved boundary: conductive

O Flat boundary: adiabatic free surface with o Momentum and continuity equation:
Marangoni driving PIMPLE (PISO&SIMPLE) algorithm
R1=1.577cm, Ry =2cm o ~ 100000 hexahedral cells
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1. NePCM: n-octadecane plus alumina nanoparticles
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o Only Maxwell&Brinkman predicts faster melting

o Convective patterns between models differ since intermediate times
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1. NePCM: n-octadecane plus alumina nanoparticles
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o Nanoparticles decrease the melting time
o Emprirical model predicts faster heat transfer rate (7.7%)

o Convective patterns between models differ at latter times
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2. Melting of a paraffin wax in microgravity: conductive transport
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2. Melting of a paraffin wax in microgravity: Marangoni driving
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o At 100°C melting is 5.2 (half), 4.18
(up) faster with thermocapillarity

Tempersture fied

o Average velocity at free surface
double at 100°C w.r.t. 50°C'

o Enhance of heat transfer rate: long
free surface

o ~ 72% time to melt remaining 50%
of solid PCM
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Okayama University

o Dept. of Mechanical and Systems Engineering, Faculty of Engineering, Okayama
University

o Heat transfer laboratory (Chairman: Akihiko Horibe)

o Prof. Naoto Haruki (contact and collaborator)
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3. Collaboration with Okayama University: Tetracosane melting

Melting in tetracosane within a cubic container
o Enough experimental data (Okayama)

o Appropriate model to fit experimental data (UPM)

A=lamm A=27mm
=12l e=bilrs
(] L]

Sulid phase

Solld phase
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3. Collaboration with Okayama University: Tetracosane melting

Melting in tetracosane within a cubic container
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Good fit between experimental data y simulations.
Simulations with a finite volume code with 106 cells.
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3. Melting stages: conductive regime

Conductive regime = Rayleigh-Bénard instability = Coarsening = Turbulence

b} t = 100s ¢) t = 300s d) t = 440s
-— -

a)t = 5ls

Stream F

+ field

| |
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3. Melting stages: Rayleigh-Bénard instability

Conductive regime = Rayleigh-Bénard instability = Coarsening = Turbulence
a) = 100s b}t = 200s c) t = 300s d) f = 400s

Temperature fiel
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3. Melting stages: first coarsening

Conductive regime = Rayleigh-Bénard instability = Coarsening = Turbulence

a) t =200z b ¢ = 500s ¢) t = 5ols dy ¢t =570z

e t = 3Ms [) 1 = 60 c) t = 6208 d) = 670s
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r
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3. Melting stages: turbulence

Conductive regime = Rayleigh-Bénard instability = Coarsening = Turbulence

b) ¢ = 400s c) t = 450 dj i = 5=
[} § = 60bs ) + = 7als d) = 10004
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3. Melting stages: scaling

o Turbulent regime: Nu ~ Ra2/7, 0T /h ~ Ra—0-29

o Linear regime: Nu ~ Ra028
Heat transfer at the bottom Thermal boundary layer
T
o
E 10°
Z
S <
i <
=
10
10° 10° 107 ro.10
Rayleigh number Foa1

10° 10° 107
Rayleigh number
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4. Micro-energy harvesters: PCM & TEG

Coupling of thermoelectric modules with PCMs for sustained electricity
generation with ambiental temperature gradients

New  project: leverage our model-
ing/simulation capabilities on PCM to
enhance the electric output of micro-energy
harvesters.

Encuy/ WV vecing
tiectricn) contucrar-Copper

Hotypo thermosssmant
i v et

Elerkical inniniseCamenic

e Huge range of potential applications

e Looking for partners to develop these
devices

Faraji et al. (2014)
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Conclusions

e Comparison of a mean field and an empirical fit for nano-enhanced PCMs
e Mean field Maxwell&Brinkman model mostly overestimates heat transfer rate
e Empirical fit shows the need to choose appropriate parameters to optimize PCM in
thermoregulation and energy recovery

e Marangoni driving very efficient mechanism to enhance heat transfer rate
of PCMs in microgravity (three-to-five times faster in cases presented)
e Confirmed in experiments in parabolic flights by the E-USOC (ESA center)

Collaboration with experimental group

Good modeling of experimental results on melting of tetracosane

New plume coarsening state induced by the moving interface

Thermal, kinematic boundary layers, number of plumes follow power laws

Exponents of the turbulent regime agree with a body of theoretical and experimental
results of classic Rayleigh-Bénard convection

Turbulent state is the main dynamic regime of PCMs in large domains with vertical
heating
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