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Phase Change Materials: PCMs

Phase Change Materials exploit the Latent Heat of the solid/liquid phase
transition to store or release a large amount of heat barely changing the
temperature
Example: melting 1kg ice at 0◦ : ∆H = 333kJ .

Same energy to heat 1kg water from 0◦ to 80◦

Hundredths known: organic (paraffins, non-paraffins), inorganic (salt
hydrates, metallics), eutectics

Paraffin waxes: stable with melting points within room temperatures
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PCMs: applications

Passive thermal control
management
Damping of extreme temperatures
Heat storage
Interior climate regulation in
buildings
Textiles: keeping body
temperature
Solar plants: buffering of energy

Space applications
Space suites
Electronic thermal control
Refrigeration of food
Conservation of biological samples
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PCMs: limitations

Selection of a PCM for a given
application
Paraffins (and most of PCM)
exhibit low conductivity: slow heat
transfer

Goal: enhance heat transfer rate with minimum complexity
Marangoni driving (microgravity)
Dispersion of nanoparticles (high potential but no good modeling)
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1. Nano-enhanced PCMs (NePCMs)
• Metallic nanoparticles increase conductivity and viscosity
• Modeled as an effective transport coefficients in NePCMs
• Ample experimental and theoretical work

Conductivity models
Maxwell (spherical particles)
Hamilton-Crosser
Jeffrey
Davis
Lu-Lin

Maxwell & Brinkman (mean field)

keff

kf

=
knp + 2kf − 2Φ(kf −knp)
knp + 2kf + Φ(kf −knp)

µeff =
µf

(1 − Φ)2.5

Strong overestimation of heat transfer
Used in most of the studies

Viscosity models
Brinkman
Einstein
Batchelor

Corcione (empirical)

keff

kf

= 1 + 4.4Re0.4
Pr

0.66
(
T

Tm

)10(knp

kf

)0.03
Φ0.66

µeff

µf

=
1

1 − 34.87(dp/df )−0.3Φ1.03

Agreement with experiments
No used to study NePCM
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1. NePCM: n-octadecane with dispersed alumina nanoparticles

Liquid phase of PCM
Maxwell&Brinkman: continued
decrease of Preff with nanoparticle
concentration
Empirical model: only some ranges
of parameters decrease Preff

Solid phase of PCM
Maxwell’s model for conductivity
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1. NePCM: Enthalpy-porosity model with modified transport coefficients

Momentum equation with porous media term

∂u
∂t

+ (u ·∇)u =−∇p+νeff∆u +C
1−f2

ε+f3 u + gρβ(T −T0)

Solid/liquid interface (Mushy region) behaves like a porous media

Term C 1−f2

ε+f3 u allows a common domain for NS and energy equations for
liquid and solid phases

Energy equation with source term[
∂

∂t
+~u ·∇

][
ρ
(
(1−fl−φ)Cpcm,s+flCpcm,l

)
+ρnpφCnp

]
T

=∇(κpcm,eff∇T )− (1−φ)ρL ∂fl
∂t

Liquid phase of PCM: Maxwell&Brinkman and empirical fit for νeff and
κeff

Solid phase of PCM: Maxwell model for conductivity
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Physical system: melting of n-octadecane with a free surface

y

x
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Solid
R2
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LÍQUIDO

R

Liquid

Solid
1

Curved boundary: conductive
Flat boundary: adiabatic free surface with
Marangoni driving

R1 = 1.577cm, R2 = 2cm

N-octadecane
ρ (Kgm−3) 776

cs|cl (JKg−1K−1) 1934|2196
κs|κl (Wm−1K) 0.358|0.13

Ts|Tm (K) 298.65|299.65
L (JKg−1) 243.5 ·103

α (K−1) 9.1 ·10−4

Adimensional numbers
Pr = 60.8
Ste = 0.45(Th = 50◦),0.9(Th = 100◦)

Numerics
OpenSource FVs: OpenFoam 2.31
Time integration: Cranck-Nicholson
Momentum and continuity equation:
PIMPLE (PISO&SIMPLE) algorithm
∼ 100000 hexahedral cells
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1. NePCM: n-octadecane plus alumina nanoparticles
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Local Nuselt Number Φ=0.06

Only Maxwell&Brinkman predicts faster melting
Convective patterns between models differ since intermediate times
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1. NePCM: n-octadecane plus alumina nanoparticles
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Nanoparticles decrease the melting time
Emprirical model predicts faster heat transfer rate (7.7%)
Convective patterns between models differ at latter times
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2. Melting of a paraffin wax in microgravity: conductive transport

Front propagation as ∼ t0.5
(Stefan problem)
Higher conductivity of solid phase:
quick advance at first stages
86% melting time to liquefy the
remaining 50% of solid PCM
Longer melting time for geometry
half
Differences of melting time
increase with Th
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2. Melting of a paraffin wax in microgravity: Marangoni driving
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At 100◦C melting is 5.2 (half), 4.18
(up) faster with thermocapillarity
Average velocity at free surface
double at 100◦C w.r.t. 50◦C

Enhance of heat transfer rate: long
free surface
∼ 72% time to melt remaining 50%
of solid PCM
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Okayama University

Dept. of Mechanical and Systems Engineering, Faculty of Engineering, Okayama
University
Heat transfer laboratory (Chairman: Akihiko Horibe)
Prof. Naoto Haruki (contact and collaborator)

y
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3. Collaboration with Okayama University: Tetracosane melting

Melting in tetracosane within a cubic container

Enough experimental data (Okayama)
Appropriate model to fit experimental data (UPM)
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3. Collaboration with Okayama University: Tetracosane melting

Melting in tetracosane within a cubic container

Good fit between experimental data y simulations.
Simulations with a finite volume code with 106 cells.
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3. Melting stages: conductive regime

Conductive regime ⇒ Rayleigh-Bénard instability ⇒ Coarsening ⇒ Turbulence

L= 0.5cm
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3. Melting stages: Rayleigh-Bénard instability

Conductive regime ⇒ Rayleigh-Bénard instability ⇒ Coarsening ⇒ Turbulence

L= 1cm
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3. Melting stages: first coarsening

Conductive regime ⇒ Rayleigh-Bénard instability ⇒ Coarsening ⇒ Turbulence

L= 2cm
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3. Melting stages: turbulence

Conductive regime ⇒ Rayleigh-Bénard instability ⇒ Coarsening ⇒ Turbulence

L= 8cm
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3. Melting stages: scaling

Turbulent regime: Nu∼Ra2/7, δT/h∼Ra−0.29

Linear regime: Nu∼Ra0.28

Heat transfer at the bottom Thermal boundary layer
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4. Micro-energy harvesters: PCM & TEG

Coupling of thermoelectric modules with PCMs for sustained electricity
generation with ambiental temperature gradients

Elefsiniotis et al. (2014)

Faraji et al. (2014)

New project: leverage our model-
ing/simulation capabilities on PCM to
enhance the electric output of micro-energy
harvesters.

• Huge range of potential applications
• Looking for partners to develop these

devices
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Conclusions

• Comparison of a mean field and an empirical fit for nano-enhanced PCMs
• Mean field Maxwell&Brinkman model mostly overestimates heat transfer rate
• Empirical fit shows the need to choose appropriate parameters to optimize PCM in

thermoregulation and energy recovery
• Marangoni driving very efficient mechanism to enhance heat transfer rate

of PCMs in microgravity (three-to-five times faster in cases presented)
• Confirmed in experiments in parabolic flights by the E-USOC (ESA center)

• Collaboration with experimental group
• Good modeling of experimental results on melting of tetracosane
• New plume coarsening state induced by the moving interface
• Thermal, kinematic boundary layers, number of plumes follow power laws
• Exponents of the turbulent regime agree with a body of theoretical and experimental

results of classic Rayleigh-Bénard convection
• Turbulent state is the main dynamic regime of PCMs in large domains with vertical

heating
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